A NEW FACILE SYNTHETIC METHOD FOR ¹⁸O-LABELLED SULFOXIDES AND CARBONYL COMPOUNDS¹.

Masaru Hojo*, Ryōichi Masuda, and Kazuko Hakotani Department of Industrial Chemistry, Faculty of Engineering, Kobe University, Kobe, 657, Japan

(Received in Japan 14 January 1978; received in UK for publication 9 February 1978)

In our recent communication² it was reported that sulfides were conveniently and selectively oxidized to sulfoxides by sulfuryl chloride in the presence of a small amount of wet silica gel. This method of oxidation was further extended³ to a facile and selective dethioacetalization to produce various

$$R-S-R' \xrightarrow{SO_2Cl_2 \text{ in } CH_2Cl_2}_{SiO_2-H_2O, \text{ rt}} R-S-R'$$
(1)

$$\underset{R'}{\overset{R''SH}{\longrightarrow}} \underset{BF_{3} \cdot Et_{2} \circ R'}{\overset{R''SH}{\longrightarrow}} \underset{R'}{\overset{SO_{2}C1_{2} \text{ in } CH_{2}C1_{2}}{\overset{SO_{2}C1_{2} \text{ in } CH_{2}C1_{2}}} \underset{R'}{\overset{R}{\longrightarrow}} \underset{R'}{\overset{C=0}{\xrightarrow}} \underset{R'}{\overset{R'}{\xrightarrow}} \underset{R'}{\overset{R'}{\overset}} \underset{R'}{\overset{R'}{\xrightarrow}} \underset{R'}{\overset{R'}{\overset}} \underset{R'}{\overset}} \underset{R'}{\overset{R'}{\overset}} \underset{R'}{\overset{R'}{\overset}} \underset{R'}{\overset{R'}{\overset}} \underset$$

kinds of carbonyl compounds. These two methods prompted us to develop a new facile and convenient synthetic method for 18 O-labelled sulfoxides and carbonyl compounds, using 18 O-enriched water in reactions (1) and (2). We now wish to report the results.

As representative examples of labeling oxygens of sulfoxides and carbonyl compounds data are shown in the Table, with phenyl benzyl sulfoxide and p-chlorobenzaldehyde, respectively. As is seen in the Table, about two thirds of 18 O-enrichment, based on that of the original water, was found with the labelled sulfoxide. In the case of the aldehyde, the corresponding 18 O-enrichment was about a half as much as that of the added water. These somewhat incomplete incorporations are probably due to partial scrambling of 18 O between the added water and water loosely bound on the surface of the silica gel⁴. If more enriched products are necessary, use of increased amounts of

1121

Table ¹⁸O-Labeling with H₂¹⁸O-Silica Gel and Sulfuryl Chloride (1) C₆H₅SCH₂C₆H₅ $\xrightarrow{H_2^{18}O-SiO_2}{SO_2Cl_2 \text{ in CH}_2Cl_2} \xrightarrow{C_6H_5SCH_2C_6H_5}$

	$\frac{18}{0}$ Content (atom §) ^a
H ₂ 0 used	1.58
Sulfoxide (yield:97 %)	1.08

(*ii*)
$$p-ClC_6H_4CHO \xrightarrow{MeSH} p-ClC_6H_4CH(SMe)_2 \xrightarrow{H_2^{18}O-SiO_2} p-ClC_6H_4CH^{18}O$$

 $in CH_2Cl_2$

	¹⁸ 0 Content (atom %) ^a
H ₂ 0 used	1.58
Aldehyde (yield:99 %)	0.65

.

```
<sup>a</sup> Determined as {}^{12}C^{16}O^{18}O.
```

enriched water and / or use of more enriched water would suffice the purpose.

As for labeling sulfoxide oxygen, oxygen-exchange in concentrated sulfuric acid⁵, oxidations of sulfides with H_2^{18} O-N-bromosuccinimide⁶, with H_2^{18} O-Br₂-1,4-diazabicyclo(2,2,2)octane⁷ and with H_2^{18} O-iodobenzene dichloride-pyridine⁸ and some other methods⁹ have been reported. As mentioned earlier² the present method of oxidation is much simpler, less costly and has wider applicability (in both selectivity and yields) than any others. ¹⁸O-Labelled carbonyl compounds have generally been prepared by oxygen-exchange between $H_2^{18}O$ and >C=O groups in the presence of bases¹⁰. However, this kind of exchange is not efficient in general and usually requires prolonged heating and use of much $H_2^{18}O$ (or repeated treatment with $H_2^{18}O$). Base catalyzed reactions of carbonyl compounds during the exchange also limit its applicability. In contrast, the silica gel-catalyzed dethioacetalization proceeds quite cleanly and can be applicable to a wide variety of carbonyl compounds³. Therefore the present thioacetalization-dethioacetalization method may be utilized as a facile and general synthetic method for various ¹⁸0-labelled carbonyl compounds.

<u>Preparation of ¹⁸O-Labelled Benzyl Phenyl Sulfoxide</u>. A solution of sulfuryl chloride (1.55 mmol) in dichloromethane (5 ml) was added dropwise at 0° to a stirred mixture of silica gel (100 mg of silicic acid, Mallinckrodt, 100 mesh), $H_2^{18}O$ (202 mg, 1.58 atom § ¹⁸O) and benzyl phenyl sulfide (209 mg, 1.04 mmol) in dichloromethane (5 ml). After stirring for 2 h at 0°, finely powdered, anhydrous potassium carbonate (0.6 g) was added to the reaction mixture and stirring was continued for another 10 min. Filtration and evaporation of the solvent in vacuo gave PhS¹⁸(O)CH₂Ph: yield:221 mg (97.2 §); m.p. 123.5-124.5°. This material was repeatedly recrystallized from nhexane-benzene for ¹⁸O-analysis. The content of ¹⁸O was determined¹¹ by combustion method (by measuring the relative heights of mass peaks for ¹²C¹⁶O¹⁸O and ¹²C¹⁶O¹⁶O) and found to be 1.08 atom §.

<u>Preparation of ¹⁸0-Labelled p-Chlorobenzaldehyde</u>. A mixture of p-chlorobenzaldehyde (5.95 g), methanethiol (25 g of 30 % methanolic solution) and boron trifluoride etherate (5 ml of 47 % ethereal solution) in benzene (20 ml) was stirred at room temperature for 24 h, which after usual work-up gave quantitatively dimethyl dithioacetal¹² of p-chlorobenzaldehyde, m.p. 35°.

A solution of sulfuryl chloride (263 mg, 1.95 mmol) in dichloromethane (5 ml) was added dropwise to a stirred mixture of the dimethyl dithioacetal (306 mg, 1.40 mmol), H_2^{18} O (297 mg, 1.58 atom % of 18 O) and silica gel (149.5 mg) in dichloromethane (5 ml) and stirring was continued for 2 h at room temperature. A small amount of finely powdered potassium carbonate was added and the mixture was filtered. The filtrate and the washing was combined and allowed to evaporate in vacuo, which gave 198 mg (99 % yield) of pchlorobenzaldehyde- 18 O, m.p. 47-48°. This material was repeatedly recrystallized from n-hexane (m.p. 48°) and submitted to analysis for 18 O as described above. The 18 O content was 0.65 atom %. Acknowledgment. We would like to express our gratitude to Profs. S. Oae, N. Furukawa, and K. Fujimori for 18 O-analysis.

REFERENCES AND NOTES

- Supported in part by a Grant-in-Aid (No. 911513), Ministry of Education, Japan.
- 2. M. Hojo and R. Masuda, Tetrahedron Lett., 1976, 613.
- 3. M. Hojo and R. Masuda, Synthesis, 1976, 678.
- 4. The lower value for the aldehyde compared to the sulfoxide may be ascribed to that the dethioacetalization probably proceeds via monosulfoxide³ and then it is hydrolyzed by external water (not an intramolecular oxygen migration). Thus, there are two chances of ¹⁸0-scrambling in the case of the dethioacetalization.
- S. Oae, T. Kitao, Y. Kitaoka, and S. Kawamura, <u>Bull. Chem. Soc. Japan</u>, <u>38</u>, 546 (1965).
- 6. W. Tagaki, K. Kikukawa, K. Ando, and S. Oae, Chem. and Ind., 1964, 1624.
- S. Oae, Y. Ohnishi, S. Kozuka, and W. Tagaki, <u>Bull. Chem. Soc. Japan</u>, <u>39</u>, 364 (1966).
- Barbieri, M. Cinquini, S. Colonna, and F. Montanari, <u>J. Chem. Soc. (C)</u>, 1968, 659.
- 9. See references cited in ref. 8.
- 10. For example, I. Roberts and H. C. Urey, J. Am. Chem. Soc., 60, 880 (1938).
- Determinations of ¹⁸O-content were carried out by Profs. S. Oae, N.Furukawa, and K. Fujimori, Tsukuba University.
- 12. Dimethyl dithioacetals are most suited to the present purpose because dimethyl disulfide produced by the dethioacetalizations is easily removed during evaporation of solvents in vacuo and the residues are practically pure carbonyl compounds³.